Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase.
نویسندگان
چکیده
Integrin-linked kinase (ILK) has been implicated in Ca(2+)- independent contraction of smooth muscle via its ability to phosphorylate myosin. We investigated the possibility that this kinase might also phosphorylate and regulate the myosin light-chain phosphatase inhibitor proteins CPI-17 [protein kinase C (PKC)-dependent phosphatase inhibitor of 17 kDa] and PHI-1 (phosphatase holoenzyme inhibitor-1), known substrates of PKC. Both phosphatase inhibitors were phosphorylated by ILK in an in-gel kinase assay and in solution. A Thr-->Ala mutation at Thr(38) of CPI-17 and Thr(57) of PHI-1 eliminated phosphorylation by ILK. Phosphopeptide mapping, phospho amino acid analysis and immunoblotting using phospho-specific antibodies indicated that ILK predominantly phosphorylated the site critical for potent inhibition, i.e. Thr(38) of CPI-17 or Thr(57) of PHI-1. CPI-17 and PHI-1 thiophosphorylated by ILK at Thr(38) or Thr(57) respectively inhibited myosin light-chain phosphatase (MLCP) activity bound to myosin, whereas the site-specific mutants CPI-17-Thr(38)Ala and PHI-1-Thr(57)Ala, treated with ILK under identical conditions, like the untreated wild-type proteins had no effect on the phosphatase. Consistent with these effects, both thiophospho-CPI-17 and -PHI-1 induced Ca(2+) sensitization of contraction of Triton X-100-demembranated rat-tail arterial smooth muscle, whereas CPI-17-Thr(38)Ala and PHI-1-Thr(57)Ala treated with ILK in the presence of adenosine 5'-[gamma-thio]triphosphate failed to evoke a contractile response. We conclude that ILK may activate smooth-muscle contraction both directly, via phosphorylation of myosin, and indirectly, via phosphorylation and activation of CPI-17 and PHI-1, leading to inhibition of MLCP.
منابع مشابه
Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors.
The regulatory circuit controlling cellular protein phosphatase-1 (PP1), an abundant group of Ser/Thr phosphatases, involves phosphorylation of PP1-specific inhibitor proteins. Malfunctions of these inhibitor proteins have been linked to a variety of diseases, including cardiovascular disease and cancer. Upon phosphorylation at Thr(38), the 17-kDa PP1 inhibitor protein, CPI-17, selectively inhi...
متن کاملPHI-1 induced enhancement of myosin phosphorylation in chicken smooth muscle.
Herein, we provide evidence that in chicken smooth muscle, G-protein stimulation by a Rho-kinase pathway leads to an increase in myosin light chain phosphorylation. Additionally, G-protein stimulation did not increase MYPT1 phosphorylation at Thr695 or Thr850, and CPI-17, was not expressed in chicken smooth muscle. However, PHI-1 was present in chicken smooth muscle tissues. Both agonist and GT...
متن کاملGi-coupled receptors mediate phosphorylation of CPI-17 and MLC20 via preferential activation of the PI3K/ILK pathway.
Sustained smooth-muscle contraction or its experimental counterpart, Ca2+ sensitization, by G(q/13)-coupled receptor agonists is mediated via RhoA-dependent inhibition of MLC (myosin light chain) phosphatase and MLC20 (20 kDa regulatory light chain of myosin II) phosphorylation by a Ca2+-independent MLCK (MLC kinase). The present study identified the corresponding pathways initiated by G(i)-cou...
متن کاملMyosin light chain kinase activation and calcium sensitization in smooth muscle in vivo.
Ca(2+)/calmodulin (CaM)-dependent phosphorylation of myosin regulatory light chain (RLC) in smooth muscle by myosin light chain kinase (MLCK) and dephosphorylation by myosin light chain phosphatase (MLCP) are subject to modulatory cascades that influence the sensitivity of RLC phosphorylation and hence contraction to intracellular Ca(2+) concentration ([Ca(2+)](i)). We designed a CaM-sensor MLC...
متن کاملDivergent kinase signaling mediates agonist-induced phosphorylation of phosphatase inhibitory proteins PHI-1 and CPI-17 in vascular smooth muscle cells.
Phosphatase holoenzyme inhibitor (PHI)-1 is one of the newest members of the family of protein phosphatase inhibitor proteins. In isolated enzyme systems, several kinases, including PKC and rho kinase (ROCK), have been shown to phosphorylate PHI-1. However, it is largely unknown whether PHI-1 is phosphorylated in response to agonist stimulation in intact cells. We investigated this question in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 367 Pt 2 شماره
صفحات -
تاریخ انتشار 2002